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STABILITY DERIVATIVES AT SUPERSONIC SPEEDS
OF THIN RECTANGULAR WINGS WITH DIAGONALS AHEAD OF TIP MACH LINES

By Sioney M. Haruox

SUMMARY

Theoretical resulis are obtained, by means of the linearized
theory, for the surface-velocify-potential functions, surface-
pressure distributions, and stability derivatives for rvarious
motions at supersonic speeds of thin flat rectangular wings
without dikedral. The investigation includes steady and accel-
crated rertical and longitudinal motions and steady rolling,
yawing, sideslipping, and pitching for Aach numbers and
aspect ratios greater than those for which the lfack line from
the leading edge of the tip section infersecis the trailing edge
of the opposite tip section. The stability derivatives are derirved
with respect to principal body axes and then trangformed o a
system of stability axes. In the case of yawing, a treatment for
the infinitely long wing which takes account of the spanwise
variation in the stream Alach number is extended to the finite
wing, and a plausible, although not rigorous, solution is obtained
for the wing tp effects.

The results for this inrestigation showed that positive yawing
at supersonic speeds may produce a negatice rolling moment
in conirast to the behavior at subsonic speeds where a positive
rolling moment would be produced. The atiainment of super-
sonic speed should produce a significant change in the positive
direction of the yawing moment per unit rolling velocity. The
results also indicate that unstable tendencies are produced by
vertical accelerations if

AYArz A

where A is wing aspect ratio and M 1is stream ach number.
INTRODUCTION

Recent developments in supersonic airfoil theory (refer-
ences 1 to 4) have led to the calculation of many of the
supersonic stability derivatives for various plan forms. In
references 5 to 8, various theoretical supersonic stability
derivatives for small disturbances are presented for thin flat
wings of delta plan form. In reference 9, the supersonic
damping due to rolling is given for triangular, trapezoidal,
and related plan forms.

In the present paper the methods of references 4, 10, and
11, which are based on the linearized theory for a uniform
stream Mach number, are used to derive the supersonic
surface-velocity-potential functions for thin flat rectangular
wings without dihedral in steady and accelerated vertical
motions and steady rolling, sideslipping, and pitching
motions. The potential functions that are obtained are then

used to derive formulas for the pressure distributions and the
stability derivatives for the foregoing motions and also for
steady yawing. In the cese of yawing, a simple treatment
given in reference 7 for the infinitely long wing, which takes
sccount of the spanwise variation in stream Mach number
associated with yawing, has shown that the assumption of a
uniform Mach number is far from adequate to deseribe the
compressibility effects. This treatment is extended herein

in order to evaluate the wing tip effects for the yawing finite-

span wing.

The steady motions that are treated herein are assumed
to give small deviations from the undisturbed flight path
and the accelerated motions are assumed to have small
accelerations. Theoretical results based on this assumption
for steady motions have, in general, been found to be reliable;
however, the reliability of such results for unsteady motions
is as yet unverified. The results presented herein cover a
range of Mach number and aspect ratio greater than that
for which the Mach line from the leading edge of the tip
section intersects the trailing edge of the opposite tip section.

SYMBOLS
Ty rectangular coordinates (see fig. 1)
Ug,lo induced flow velocities along z- and y-axes,
respectively
l coordinate in flight direction if this direction

is inclined to z-axis

u,r,w ineremental flight velocities along z-, ¥-, and
z-axes, respectively (see fig. 2}

% derivative of # with respect to time

w accelerated vertical motion

14 undisturbed flight velocity

v’ local flight velocity after disturbanee; used to
indicate inclination of flight direction to
z-axis (see fig. 1)

2,q,r angular velocities about 2-, ¥-, and z-axes,
respectively (see fig. 2)

a speed of sound

A stream Mach number (V/a)

B=+Ar—1

H Mach angle (sin“zlz)

o wing angle of attack in steady flight, radians
(/)

o local inclination of airfoil surface with respect

to free stream, radians (Vl-l-u)
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derivative of « with respect to time

time following disturbance, seconds

angle of sideslip, radians (v/V)

chord

wing semispan

wing span

total wing area

region of integration over portion of wing
surface (see fig. 3)

aspect ratio (g-f— or %)

distance of origin of stability axes from the
midchord point, measured along u-axis,
positive ahead of midchord point

mass density of air

disturbance-velocity potential on upper sur-
face of airfoil

auxiliary variables which replace z and ¥, re-
spectively (see fig. 1)

indicates a transformation of origin of z- and
y-axes or §- and g-axes from leading edge of
center section to leading edge of tip section
(y.=y—h on right half-wing; y,=—y—~
on left half-wing)

pressure difference between lower and upper
surfaces of  airfoil, positive in direction of
lift

nondimensional coefficient expressing ratio of
pressure difference .between lower and
upper surfaces of airfoil to free-stream

. AP
dynamic pressure
(6

constant given by equation (9)

induced suction force on wing tip per unif
length of tip

forces parallel to -, -, and z-axes, respectively
(see fig. 2)

longitudinal-force coefficient <—J—(—)

p
Lves

lateral-force coefficient 4
% Vis

vertical-force coefficient Z
Vs

skin-friction drag coefficient
(Skin—friction drag)

p
3 Vs
moments about z-, -, and z-axes, respec-
tively (see fig. 2); M is also used to refer to
Mach number

(8f rolling moment coefficient L

£ V2Sh
: - . M

Ca pitching-moment coefficient { -

L yige
2
. . N

C., yawing-moment coeficient f -———

£ 1728b

Subscript:

1,2 contributions of normal pressures and skin
friction, respectively, to Cy,; also used to
indicate component parts of Ciy Cr, Chy,
Cz,, and Cp,

Superscript:

w,p contributions caused by vertical motion and

rolling motion, respectively
Whenever p, ¢, 7, 8, &, %, &, and % arc used as subsecripis,
a nondimensional derivative is indicated and this derivative
is the slope through zero. For example:

0;,,=— 20, 7] O aacl )
)J o

a< L =@l

- %_%)M | Z’(V*) s

Unprimed stability derivatives refer to principal body
axes; primed stability derivatives refer to stability axes.

ANALYSIS
GENERAL CONCEPTS

The coordinate axes and the symbols used in the analysis
of the rectangular wing are shown in figure 1. The derivation
of the formulas for the surface-velocity-potential funciions,
pressure distributions, and stability derivatives is made
initially with reference to principal body axes which are fixed
in the wing with the origin at the midchord of the center

section (%, 0, 0). This system of axes is shown in figure 2 (a)_

The transformation of these stability derivatives to a system
of stability axes (fig. 2 (b)) is discussed in the section entitled
“Results and Discussion.”

The stability derivatives are determined from integrations
of the forces and moments over the wing. For vertical and
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FIGURE 1.—Axes and notation used in analysis.

pitching motions which yield equal and opposite suction
forces elong the edge of each wing tip, the only resultant
forces and moments acting on the wing, if skin friction is
neglected, are those caused by the pressures on the airfoil
surfaces. These pressures are obtained from the familiar
Bernoulli equation. In rolling, yawing, or sideslipping, how-
ever, unbalanced suction forces which produce lateral forces
and yawing moments are induced along the wing tips in
addition to the forces and moments resulting from the pres-
sure normal to the wing surface. The subsequent analysis
for the calculation of the stability derivatives is then resolved
to a determinetion of the pressure distribution normal to the
surface and the unbalanced suction forces along the wing-tip
edges.

The pressure difference between the upper and lower
surfaces (positive upward) at any point on the wing is
determined from the genersl Bernoulli equation for small
disturbances as

, 00 , O
aP=2p (V' 50+32 @

u,.X p,L

N

(o)

(a) Principal body axes. Origin at center of wing.
(b) Stability axes. Origin at pofat (%—z..,o,o).
Prineipal body axes dotted for comparison.
FiGURR 2.—Velocities, forees, and moments relative to principal body and stability axes.

where 17 is the local flight velocity and [ refers to a coordi-
nate measured in the flight direction. The term 3¢/df ex-~
presses the effect of any unsteadiness in the flow. The
velocity potential ¢ in equation (1) must be determined so as
to satisfy the linearized partial-differential equation (with
time dependency if the motion is unsteady) of the flow and
the boundary conditions associated with the particular mo-
tion under consideration. Thus, the potential must give
streamlines that are tangent to the airfoil surface and a pres-
sure field that is continuous at all points exterior to the
wing. Equation (1) shows that the pressure distribution
on the wing is determined when the surface-potential function
is found.

The method of reference 4 is in general adaptable to the prob-
lem of obtaining the surface-potential function ¢ in supersonic
flight to meet boundary conditions associated with small
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steady motions, such as vertical motions, rolling, sideslipping,
and pitching. The method is an extension, to include tip ef-
fects, of the work of Puckett and others which uses the super-
position of elementary source solutions to obtain the potential
function. In cases where a point on the wing is influenced
by two or more mutually interacting external fields, the inter-
action introduces difficulties in the solution for the surface
potential. (See also reference 12.) If any point on the wing
is influenced by only one independent external field, however,
the potential function in a region affected by the wing tip
may be obtained by integration of elementary source solu-
tions solely over an appropriate area of the wing. The
strength of these sources is shown to be a function only of the
local slope of the airfoil surface with reference to the free-
stream direction. Inasmuch as the slope of the airfoil sur-
face with reference to the free-stream direction is known for a
given motion, the distribution of sources is known and, con-
sequently, the distribution of the surface-potential function
is determined by an integration of the elementary source
solutions over an appropriate area of the wing.

As applied to the rectangular wing at supersonic speeds,
the foregoing method of reference 4 for one independent
external field is valid as long as the foremost Mach wave
from one tip does not intersect the opposite tip, that is, for
Mach numbers and aspect ratios for which AB=1. For
this case, the potential at a point on the top surface of a
thin flat wing may be determined by means of equation (14)
of reference 4 and is as follows:

o dt dy,

Y
¢($:ya)—;rf Su A/ (@—E =By, —na)? @

where o’ represents the local angle of attack of the airfoil
surface at the point (¢7,). TFigure 3 shows a typical region
Sy for determining the potential at a point (x,y,) in s
rectangular wing. The figure shows the boundaries S, over
which the integration must e performed, for a point (z,y,)
which is affected by the wing-tip region. If the point
(z,4.) is located at or inboard of the foremost Mach line
from the tip, this point is unaffected by the tip region and
Sy i8 bounded by the leading edge and the Mach forecone
from (z,.). Suppose that the surface potential ¢ (z,y) has
been obtained from equation (2) or by some other method,
then the differentiation of ¢ with respect to the coordinate
in the free-stream direction determines the pressure distri-
bution by means of the Bernoulli relation, equation (1).

The expressions for determining the surface potential and
the pressure coefficient for unsteady motions are discussed
in the section entitled “Derivation of Formulas.”

DERIVATION OF FORMULAS

The subsequent derivation of formulas for the various
motions will involve first the determination of distributions
of surface potential and then the determination of surface-
pressure distributions and eny unbalanced suction forces

along the wing tips. The integrals required for these deriva-
tions and also those required for the stability derivatives are
integrable either directly or after reduction by parts by means
of standard formulas such as are given in reference 13;
hence, the details for the integrations are not shown.
In the operations involving factoring from radicals, care
must be used to preserve the correct sign of the factors; for
example, if
¥.<0
then

\f??= \/(_ya) =—v.

For brevity, the final formulas are omitted from the deriva-
tions and appear only in tables at the end of the paper.
Thus, the distributions of ¢ and Acp are summarized in
table I, and the stability derivatives are summarized in
table IT.

All the derivations are mede specifically for & wing for
which AB=2, that is, for which the foremost Mach wave
from a tip does not intersect the remots half-wing. The
formulas in table I for the potential ¢ and pressure coefficient
Acp that are obtained for ABZ2 can be applied to wings in
which 1S AB=2 by using the principle of symmetry and
superposing separately each tip effect at the point under
consideration to the value obtained for the infinitely long
wing. _A consideration of this superposition principle for the
rectangular wing shows, however, that the stability deriva-
tives which are obtained for AB=22 apply as well to wings
for which AB=1. A more detailed description of table II
is given in the section entiiled “Results and Discussion.”

VERTICAL, PITCHING, AND LONGITUDINAL MOTIONS

Derivatives —C(z, and — (5 —TFor steady pitching motion
about a lateral axis through the midchord point, the loeal
slope of the airfoil surface with respect to the free-stream

direction is
O‘., =a .+. ._.....V —q

where a is the angle of attack in the absence of pitching.
In order to obtain the potential distribution, this value of
a’ is substituted into equation (2) and the double integration
for the variables ¢ and =, is performed between the limits
indicated in figure 3. The pressure coeflicient is then ob-
tained from equation (1) for steady motions as

49 P
Aop=15 to=15 32 - ®

These pressure coefficients are then differentiated with respect
to a« and ¢. The integrations of the respective distributions
of Acp over the wing and conversion to nondimensional
units then give the derivatives —Oza and —C,‘.
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Fiouvrr 3.—Region of integration for obtalning supersonic veloclty-potential fanction for
rectangular wing of finite wing span. Reglon of integration for polnt (z,y¢) shown cross-
hatched: #.=y—k on right half-wing; y<=—r—Ai on left half-wing.

Derivatives C., and C,.t.—Derivatives C., end C’,.f
are obtained directly from the pressure-coefficient distribu-
tions for angle of attack and pitching, thus

Cumps [° [ e (§-2) di
m hcz & Jo P 2 -yc

where Aep for angle of attack and pitching is given in table I.

Derivatives Uy, and Cx,.—At supersonic speeds the re-
sultant pressure force on a rectangular wing of zero thickness
acts normal to the surface as there is no suction at the
leading edge. Thus, the forces in the z-direction arise solely
from skin friction. On the assumption that the skin friction
is independent of « and ¢, the derivatives Cr_ and O’Xe are

Zero.
Derivatives —Cy,, Cx,, and —Cy,.—The derivative — (%,
is obtained from the equation

—Z=—d'Cz, 5 (V+u)'S
Then

—Coy = o [/ O (V) Tu
The function— Cz_ is obtained from table II. Its depend-
ence on the incremental flight velocity U is indicated by

2
giving B in the form /(V—l—u) —1 and o in the form

o Then
o =l 4wty 1
wVou| [(VEw'_ 04 VT’ _
- 1 24 s 1 .
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The derivative (', is obtained from the equation

M=ao'Cy £ (V+u)2Se
Then
Co,= Vbu [o Cna(V42) g

The function C,_is obtained from table II, where its de-

pendence on « is indicated by writing «” and B in the same
form given previously for the derivative —( . Then

12 w(V+u)
Py

Cri=7 55 i
The deriva.t-ive —Cy, results from skin friction and is
obtained from the equation

—X=Cp, g (V4+u)2S cos
Then
—Cs, o [Coy(V+0)]
ACCELERATED MOTIONS

For accelerated motions in the vertical plane of symmetry,
the pressure coefficient from equation (1) is

der=3 (55 30 @

The surface potential ¢ in equation (4) for unsteady motions
of thin airfoils in two-dimensional supersonic flow has been
derived in reference 14. In reference 10, the methods of
references 4 and 12 for steady flow at supersonic speeds are
extended in order to determine solutions for the surface po-
tential and pressure coefficient for unsteady motions in three-
dimensional flow. In the present analysis the solutions
obtained in reference 10 will be utilized to calculate the deriv-
atives in vertical motions with small constant accelerations.
Derivatives — (g, On;, and —Cr,.—The surface potential
¢ for uniformly accelerated motion as obtained for the region
within the tip Mach cone is (reference 10, equation (31))

s, v =g {| 2BVee+ BT [y (4 )+
(Vat:c 2_;‘2) st <2y“ +1)} (5)

In converting from the notation of reference 10 for a
rectangular wing to the present notation, the following

‘transformations are made: U=V, m=c'r, a=0, §=B8, c=}r_7{,

k=1, u,=v.,— 2B (z+y.B), Uu= 2B (z— y,,B),——l and
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C,= -—— - In order to obtain ¢ in the region between the tip
Mach cones, ¥, in equation (5) is set equal to —% and,
therefore,
V., M
s=5 (4~ 3pp ®)

The pressure coefficient Acp contributed by the vertical
accelerating motion is obtained by partial differentiation of
¢ (equations (5) and (6)) with respect to # and ¢, by letting
=0, and then by substituting these expressions for d¢/0x and
0¢/0t in equation (4). This process ylelds in the region
within the tip Mach cones __.

Acp(2,ya) = T‘V[““ cos™ (2;;,, +1)+ZB’\/ —Ys (ya+ B I
7

and in the region between the tip Mach cones

Acp= -14;—&'3% ®

Equsations (7) and (8) correspond to equation (33) of
reference 10, after the appropriate transformations noted
previously for ¢ are made.

The derivatives —Cz, and Cn, are then obtained by
integration of the corresponding Ac,-distributions and con-
version to nondimensional units. The derivative Cx, is
shown to be zero by the use of assumptions similar to those
noted previously for Ck,.

Derivatives —Cy,;, Cn,;, and ~Cx,—For small accelerations
along the flight path, the potential will remain substantially
unchenged. The increments in pressure caused by these
accelerations, therefore, are assumed to be negligible, and the
derivatives —Cz,, Cn;, and —Cx, are approximately zero.

ROLLING

Derivative C;,—In steady rolling motion with angular
velocity p, the local slope of the airfoil surface with respect
to the flow direction is

4 (‘na+h)
14

i
*=y

In order to obtain the potential distribution this value of &’
is substituted into equation (2) and the double integration
for the variables ¢ and 7, is performed between the limits
indicated in figure 8. The pressure coefficient is then ob-
tained from equation (3). The derivative Oy, is obtained
by integrating the moments of the Bernoulli pressure dis-
tribution for rolling given in table I and by converting this
result to coefficient form.,
Derivatives Oy, and C,,—
force and yawing moment relative to body axes result entirely

In a rolling motion, the lateral

REPORT 025—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

from suction along the tips. These suction forces may be
evaluated by applying a method suggested in reference 15
for incompressible flow and modified for compressibility
effects in reference 3. Thus, if the induced surface velocity
normal to the wing tip is expressed as

_ q
Dp= ﬂ:m &)

where @ is a constant, then the suction force per unit length
of tip is

Fy=mpG?

(A more general expression for edge suction that is still valid
when the edge is inclined to the stream is given in reference 3
and recast in reference 7.)

Consider the induced surface velocity normal to the tip of 2
wing rolling with an initial angle of attack a. This velocity

-G+ Gl

where the superseripts w and p refer to the potentials oblained
for & vertical motion and a rolling motion, respectively.

From table 1
(2B 1) 424/ (y.+§_):|

and partial differentiation of ¢* with respect Lo ¥ yields

1%
$¥ (2, %) =?a [% cos

¢ 2Va
we=(3)=() =215 o
where %,<0. Very near the tip, —,—0 and
7,
ooe=(32)'=~20e, 22 (1)

The potential in rolling ¢ is given in (able I. By partial
differentiation of ¢* with respect to ¥ and then by lettling
—s—0, there results

h—
(vo)”——=-~-2;17 g(—{———_i;B ) (12)

The resultant induced surface velocity normal to the wing
tip as —y,—0 is obtained by adding equations (11) and (12).

Thus
(og) "7 =—2 \/B I: <7 ) = I.ra:l 13)

'\/‘_ Ye

The plus sign before V refers to the right wing tip and the
negative sign refers to the left wing tip.




STABILITY DERIVATIVES AT SUPERSONIC SPEEDS OF THIN RECTANGULAR WINGS

Very near the wing tip, equation (13} has the same form
as equation (9) and, therefore, the total suction force per
unit length along the wing tip is

4 2
FamrpP=22 [p= (h—3iB) +2pVe (h—g%>+ Vw]
v (14)
In equation (14) only the term :I:SP—?B—a (h—?’%) will

give rise to a lateral force and a yawing moment which are
obtained by integrating this term along the wing {ips.
These forces and moments are then converted to non-
dimensional form to give the derivatives 01—’ and (% .

SIDESLIP

The pressure coefficient obtained from equation (1) for
steady flight is )
_2 9
AP =7 3l

where V’ and ! are measured in the flight direction. If
sideslip occurs the flight direction is inclined relative to the
r-axis by the sideslip angle 8. The rectangular wing in
sideslip, therefore, becomes equivalent to & yawed wing
with the leading wing tip reked out and the trailing wing tip
raked in. If the Kutta-Joukowski condition at the trailing
wing tip is neglected, the potential function for the yawed
rectangular plan form may be obtained by the method of
reference 4. In reference 11, the method of reference 4 is
extended in order to obtain solutions for edges for which the
Kutta-Joukowski requirement must be satisfied.

Physical considerations suggest, however, that for small
sideslip angles, the actual flow for typically rounded wing tips
would in general be unlikely to conform to the Kutta-
Joukowski conditions along the trailing wing tip. The edge
suction for a lifting wing arises because of the fow from the
bottom surface to the top surface around the side edge. This
flow may be presumed to go sround any boundary layer that
may be present. The local boundary layer thus experiences
the edge suetion. Rough calculations suggest that the edge
suction per unit area is approximately constant from the
leading edge to the point of maximum profile thickness, and
then increases rapidly from the point of maximum thickness
to the trailing edge. The pressure gradient is therefore
favorable and the flow at the side edge is not espected to
separate. This condition should persist for small or moderate
amounts of sideslip until the additional pressure inerement
caused by sideslip produces a strong adverse pressure
gradient. Further theoretical and experimental investigation
is required to obtain quantitetive results regarding these
phenomena, On the basis of the foregoing considerations, it
will be assumed in the present analysis that the Kufta-
Joukowski condition is not satisfied along the trailing wing
tip. The effect of satisfying the Kutta-Joukowski condition
along the trailing wing tip in sideslip is discussed in this
analysis and also in the section entitled “Results and
Discussion.”

107

Derivative Ci.—The potential corresponding to a thin

rectangular wing at an angle of attack and a finite angle of
sideslip may be obtained from reference 4, equation (20).
The corresponding pressure distribution may be obtained
from reference 11, appendix C, equation (C4). These solu-
tions from references 4 and 11 were simplified to the approxi-
mate form for smell angles of sideslip (82<1) and converted
to the present notation with respect to axes shown in figure 1.
The distributions for ¢ and Ac¢p caused by combined vertical
motion and sideslip are given in table I. The regions for
which these expressions for ¢ and Acp are applicable are
bounded by Mach lines with respect to the stream velocity
¥V’ which is inclined to the r-axis by the sideslip angle 8. As
noted previously, these expressions do not satisfy the Kutta-

Joukowski condition along the trailing wing tip. Asindicated ﬁ_
in reference 11, however, the Kutta-Joukowski condition

along the trailing wing tip merely cancels the radical term
in the expression for Acp within the Mach cone from the
trailing wing tip.

A consideration of the foregoing Acy-distributions indicates
that as a result of sideslip the lift within the Mach cone from
the leading wing tip is increased, whereas the lift within the

Mach conse from the trailing wing tip is decreased. A rolling

moment is thereby produced. Furthermore, as a result of
sideslip, the Mach lines are shifted toward the trailing wing
tip, and this shift contributes an additional rolling moment.
The magnitude of the rolling moment caused by sideslip is

given in table II in terms of the nondimensional derivative

(Olﬁ)p_.o-

Derivatives Cyﬂ and O,.ﬂ.—The derivatives Cyﬂ and C,.ﬂ
can result solely from suction forces which are induced
at the wing tips. These suction forces for sideslipping motion
were evaluated by a2 method similar to that described pre-
viously for obtaining Cy, and C,,. The treatment for side-
slip was based on the conclusion, noted previously, that the
Kutta-Joukowski condition is unlikely to be satisfied for
typically rounded wing tips at small angles of sideslip. The
potential ¢ for determining the induced velocity normal to
the wing tip was obtained from table I. The resultant lateral
force and yawing moment are given in nondimensional form
in table II.

YAWING

In yawing flight, the stream velocity varies linearly along
the span. This effect introduces variations of both dynamic
pressure and compressibility effects along the wing span.

The surface potential as expressed in equation (2} satisfies

the linearized potential equation for a uniform stream Mach
number, but is inadequate to account for the compressi-
bility effects associated with a spanwise variation of stream
Machnumber. (Seereference 7.) The case of the trapezoidal
wing with tips cut off along the Mach lines (raked tips)
was analyzed in reference 7. It was shown that the pressure
distribution could be obtained by application of the Ackeret
two-dimensionel theory modified by using the local Mach
number at each spanwise station as affected by the yawing.
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Inclusion of the spanwise variation in Mach number was
demonstrated to have a profound effect on the pressure
distribution.

The addition of suitable triangular tips to the aforemen-
tioned trapezoidal wing converts it into a rectangular wing.
The added tips lie wholly within the tip Mach cones and
thus their addition does not alter the pressures on the trap-
ezoidal portions. A rigorous solution for the pressures on
the tip portions cannot yet be demonstrated. However, an
expression. that appears plausible has been obtained. This
pressure distribution for the tip portions is derived by super-
posing on the Ackeret pressure distribution, as modified by
local Mach number, an appropriate function which fulfills
the boundary condition for no pressure discontinuities in
the region exterior to the wing. This function thus repre-
sents the effect of the wing cut-off and is designated herein
as the tip effect. The pressure difference AP at any point
according to the Ackeret theory based on local Mach number
is (reference 7): . _ _ .

2p(V—ri)w

N
a

Equation (15) shows that the pressure distribution for an
infinitely long wing which has a steady yawing velocity r and
vertical velocity w is expressed by two components. One of
these components is proportional to w, is constant, and gives
the pressure distribution contributed by an angle of attack
in straight flight. The other component is proportional to
wr, gives a linear antisymmetrical distribution with respect
to y, and expresses the pressure distribution contributed by
yawing.

It will be recalled that the solution for steady rolling,
treated in a preceding section, resulted likewise in & pressure
distribution proportional to y in the region between the tip
Mach cones. The pressure distributions contributed by roll-
ing and by yawing are thus propertionel in the region be-
tween the tip Mach cones. The wing cut-off is effected by
canceling the disturbance pressures outboard of the desired
tip location by means of & function that satisfies the bound-
ary conditions on the wing. Because the two pressure dis-
tributions to be canceled correspond in the yawing and roll-
ing cases, the incremental pressure function or tip effect for
each case evidently must reduce to forms which will have
the same factor of proportionality in the entire plane of the
wing outboard of the tip. It seems reasonable to assume,
therefore, that for small yawing motions the two pressure
distributions will also have very nearly the same factor of
proportionality within the tip Mach cones.

The proportionality constant between the pressure distri-
butions for rolling and yawing motions may be determined
by a comparison of the cases of rolling and yawing in column 4
of table I. The pressure coefficient per unit yawing veloc-
ity is seen to be ofB? times the pressure coefficient per unit
rolling velocity, or

7
(AP) ea= =22 (1+5%)  a8)
1 . .

(ACP) vawing Eazr (AGP) rolling (16)
D

where equation (16} will apply over the whole wing.
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Derivative C; —The preceding analysis indicated that the
pressure distribution per unit yawing velocity is in asimplo
ratio to that produced per unit rolling velocity {equation (16)).
Thus

0‘r=é¢_2 0:,

.The derivative C; has been derived previously and is given
f 4

in table IT.

Derivatives (y, and C, . —When the wing yaws, the
antisymmetrical pressure distribution which is indicated by
equation (15) will produce unbalanced suction forces at the
right and left wing tips and thereby give rise to lateral forces
and yawing moments. In addition, skin frietion will con-
tribute & yawing moment.

It appears that a reasonable although approximate evalu-
ation of the tip suction forces in yawing can be obtained by
means of the correspondence of yawing with rolling as utilized
previously in deriving equation (16). This procedure docs
not satisfy the Kutta-Joukowski requirement in the sideslip
component of the stream velocity in yawing; however, this
theoretical deviation is likely to be very small in the actual
flow. On the basis of these considerations, the induced sue-
tion forces on. the wing tips per unit yawing velocitly will be
related in the ratio «/B? to the corresponding induced suction
forces per unit rolling veloeity which were derived previously
(section _entitled “Derivatives pr and C',.F”). The contri-

butions of the tip suction forces to Cy, and C,_are, therefore,
1

OYr = B—% C }'p
and ]
Crp =72 Ci,

where Cy_and C, are given in table II.
The effect of skin friction on the yawing moment due to
yawing is

Ny=cos aJ: LCC-"DO% |:(V_ ryl4-r -;—x),][ .l'—%) 8 +y] dxdy

where the first bracketed term expresses the square of the
resultant local velocity and 8 is the local angle of sideslip:

()
—1" 2 &L
ALY,

Eliminating second-order terms and terms corresponding to
symmetrical drag forces and converting N; Lo cocflicient
form yields

oG [ [ o e

RESULTS AND DISCUSSION

As noted in the preceding analysis, the nondimensional
stability derivatives which are presented in table IT were
derived with reference to principal body axes with the origin
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at point (< ) _ directly indicated, although it can be determined from the
P (2’0’0 . These results may be transformed by curves. These data are shown in figure 4 for the lateral
means of the equations in the last column of table I to | stability derivatives and in figure 5 for the longitudinal
apply to stability axes with the origin at an 9_~1‘_b1t1'&1'5’_ dis- | stability derivatives. The data in figures 4 and 5 are to be
tance Tex from the midchord pomt. The Stﬁbﬂlt){ axes are | ysed in conjunction with the transformation formulas pre-
511?“’1_1 in figures 2 (b) and are obtained by & rotation of .ﬂ_le sented in table IT to evaluate the derivatives with respect to
Prmmpal b_OdY axes .(ﬁg. 2 (a)) through an angle «; t}_le origin | gstability axes. In the evaluation of these derivatives, many
is then shifted a distance . along the new z-axis. The | of the terms are likely to be relatively small; therefore, the
conversion to stability axes was obtained by means of the | expressions will be noticeably simplified when such terms are
transformation formulas given in reference 16, with the | peglected in the computations.
omission of relatively unimportant terms compared to unity, The results of the present investigation have been derived
such as o*. o ) ] ) on the assumptions of zero thickness and small disturbances.
The formulas for the derivatives given in table IT with | Potential flow is assumed except in the case of C, and Cr,
reference to principal body axes are shown plotted in figures 4 | i which skin friction is considered. The practical effects
and 5 ageinst the parameter AB. (Derivative —Cy, and | ¢ the Kutta-Joukowski requirements which are introduced
those derivatives equal to zero are omitted from the figures.) | at the wing tips in sideslip and yawing are not definitely
These curves show the variation of the stebility derivatives | known. On this besis, the data shown in figures 4 and 5 _
with aspect ratio for constant Mach number. The varia- | are expected to apply in general to thin wing sections for
tion with Mach number for constant aspect ratic is not | small steady motions, motions with small accelerations, or
oscillatory motions of low frequency in which boundary-
~l4 layer effects are not expected to be important. The applica-
bility of the present theory to Mach numbers in the vicinity
of unity, very high Mach numbers, or for very low aspect
ratios is uncertain.
~12 The data in figure 4 (a) show that at supersonic speeds the
derivative B°C'; [a is negative in contrast with the behavior
-.28 T
~10 t
: |
!
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FIGrEE 4—Variation of supersonic lateral stabllity derivatives with aspect ratio-Mach
lnumber m‘s‘ ‘]’) :t““ﬁm :{ th respet to principal body axes; thin fiat (b) Yawing-moment-coefficlent derivatfves.
wing: no dthedral. (See table IT for conversion to stabflity axes.) Fiaure 4.—Contlnued.
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Figuak 4.—Concluded.

at subsonic speeds where positive values would be obtained.
This phenomenon was pointed out for the infinitely long
wing in reference 7 and its physical significance elaborated
upon. For stability axes, the formula for C;’ (table II)
indicates that another reversal in sign to a positive value
occurs as the Mach number is increased beyond approxi-
mately 1.41 for typical rectangular wings. (Also see
reference 7 for the infinitely long wing.)

The suction force at the leading edge of rectangular wings
vanishes at supersonic speeds. This factor should have an
important influence on the derivatives C; and Cn, as super-

sonic speeds are attained. In the case of C, (stability

axes), the results of the present analysis indicate that at
supersonic speeds the sign of €, will have positive values
in many typical cases in contrast to negative values normally
obtained at subsonic speeds. In the case of G, or C,’, the
loss of leading-edge suction tends to be compensated by
the spanwise compressibility effects associated with super-
sonic speeds.

As noted previously in the analysis, the Kutta-Joukowski
condition is unlikely to be satisfied slong the trailing wing
tip for a typically rounded wing tip at small angles of sideslip.
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Therefore, the results for Cy, in figure 4 (a) are applica-

o, ble where the Kutta-Joukowski condition along the wing

VR trailing edge is nof satisfied. In order to determine the

7 ' effect on of satisfying the Kutta-Joukowski condition

L4 elong the trailing wing tip, the formula for (', which meets

this requirement was also obtained and is as follows:

_af1 342B
Oy~ \aB— 3A2—B=)

A comparison of this formula with the data for C‘;ﬂ given

in figure 4 (a) indicates that the effect of satisfying the Kutta-

Joukowski condition along the trailing wing tip reduces

negatively the values of ('), from those obteined by neglect-

ing the Kutta-Joukowski condition. For example for B=1"

~BCn,y and AB=4, when the Kutta-Joukowski condition slong the

trailing wing tip is neglected, (},,=—0.083e; and when

the Kutta-Joukowski condition is satisfied along the trailing

wing tip, (%,=0.146a. Thus, it is expected that when

the sideslip angle becomes large, the dihedral effect —C,,

Hi should be reduced significantly because of the Kutta-

Ve, Joukowski condition along the trailing wing tip.

The longitudinal stability derivatives in figure 5 refer to an

axis whose origin is located at the midchord point. The data

in figure 5 (¢) for B(,, show that rectangular wings, with

reference to this origin, have an increasingly unstable

pitching moment with decreasing aspect ratio which cor-

responds to a forward shift in the aerodynamic center. TFor

infinite aspect ratio, the aerodynamic center is Jocated at

the midchord point or B(,_=0. If the aspect ratio is
decreased to a value of 4 for & Mach number of 1.41, figure 5

indicates a forward shift of the serodynamic center of

0.025 chord. With constant Mach number, the ratio

BC,,/—B(%, is obtained from figure 5 solely as a function of
AB, These data indicate that with constani aspect ratio

and increasing Mach number, the aerodynamic center will

shift rearward. For an aspect ratio of 4, an increase in
Mach number from 1.4 to 1.9 will shift the serodynamic

center rearward 0.01 chord.

The derivative —Cy, given in table II for infinite aspect

ratio is negative which indicates negative damping or insta-

bility. The ratio — C,/— Cj, from table IT gives the location

15, & BCny of the center of pressure of the resultant lift contributed

N by & By teking this ratio for infinite aspect ratio, the

L 1 center of pressure is found to be located at a point % ¢ behind

the leading edge. The negative damping produced by &,

5 5 -5 >0 therefore, gives an unstable pitching moment for center-of-

AR

gravity locations ahead of n:——-g- ¢. 'These unstable tendencies
@ Oy Cmg
CO=g e ) %

caused by & are minimized by the effects of finite span and

. - . e i M2+1
the instability due to (;, disappears entirely if ABS 3

@ CoymCay +Cmy -

Figuez 5.—Concluded.
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CONCLUSIONS *

A theoretical investigation hes been made by means of
the linearized theory to obtain formulas for the surface-
velocity-potential functions, surface-pressure distributions,
and stability derivatives for various motions at supersonic
speeds for rectangular wings of zero thickness without
dihedral. The investigation included steady and accelerat-
ing vertical and longitudinal motions and steady rolling,
yawing, sideslipping, and pitching for Mach numbers and
aspect ratios greater than those for which the Mach line
from the leading edge of the tip section intersects the trailing
edge of the opposite tip section.

The following significant conclusions have been obtained
for this investigation:

1. At supersonic speeds for Mach numbers smaller than
approximately 1.41, positive yawing generally results in a
negative rolling moment in contrast to the behavior at sub-
sonic speeds where a positive rolling moment is produced.

2. The attainment of supersonic speed produces a signifi-
cant change in the positive direction of the yawing moment
per unit rolling veloeity.

3. For infinite aspect ratio, a constant vertical accelera-
tion causes a negative damping in the vertical motion, and
an unstable pitching moment for center-of-gravity locations

ahead of the % -chord point. These unstable tendencies are

minimized by the cffects of finite span and the instability
due to the rate of change of Iift with vertical acceleration

2
disappears entirely if AvM?—1% M3+1 where A4 is the

aspect ratio and M is the Mach number.

LANGLEY AERONAUTICAL LABORATORY,
NarTionaL Apvisory COMMITTEE FOR AERONAUTICS,
LangLEY Fiewp, Va., June 80, 1948,
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TABLE I—DISTRIBUTIONS OF ADDITIONAL SURFACE VELOCITY POTENTIAL AND PRESSURE-DIFFERENCE COEFFICIENT CAUSED BY
VARIOUS WING MOTIONS

[Thin flat rectangular wing; no dihedral; ABZ2; axes are shown in figs, 1 and 2]

Velocity potential on upper surface, ¢ Pregsure-difference 002?}}";%1132 ,bAe::veen upper and lower
\(&) { X ‘ = \
Wing || N ,'}V = N AF M ‘{i 7 P A M
Motion ®) )
Vertical, w Ve Vo[ & cost (2Bt )+ 2 —ve (vet5) | 5 2% cosmt (2B 1)
Accelerated Vo (t-— M ; {[2BVt+maB___m2] V —y,(ya-i—%) _ Axd {F;?é‘!'t?["% cog™ (@"F 1>+
vertical, w B\ 2 ] -|-<Vrt—-- . )co _1< +1>} VB )i 2]32\/%@]}‘—'0
e
Pitching, ¢ e 7l 60 o S 4q(+—3) = [gﬂ:‘;z‘) cor™t (P4 1)+
) 2 (51—1—2:1/3,,B—-3c) e 2/.,+%>:| —Byv _ :|
24/ Vs (?/a"l'B)
Roling, 1 e [% ek a2 . LAPRESNEZ
7 B Ve 3”)\/ ”“-’/“(?/4“' 5] Y \/ —¥a (ya+%):|
(o) (¢) .
C°?i”ﬁ]§?,%§,?f]e' Vex Va{7‘3=f"=ﬂ‘ oo™t | 2ol +1:|+ e { o L Eie 1]+
an ca. .
e | i Byt Bo)l —'f,?gﬁ | ) 3—p) |
@
Yawing, r oMirya bory 2| wetm sty [ 28
\/ ~Ya (ya+§; ):I

SONIM .}IV'IQSNV;IOE[}I NIEI 30 SQEAIS DINOSHTJAS IV STAIIVAINAJ XITTIEVLS

» Crosshatching indiecatea region where formulas are applioable.

b Also infinite aspect; ratio.

o Pormula applies to right half-wing; for left half-wing, replace 8 by —§.

4 Not established rigorously; see toxt.
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TABLE II.—STABILITY DERIVATIVES OF THIN FLAT RECTANGULAR WINGS WITHOUT DIHEDRAL AT SUPERSONIC SP]}IEDS

Principal body axes Stability axes
(origin at point (92—, 0, 0)) (orlgin at distance z., measured positive ahead of midehord poinf (%—Ic,, 0, 0))
derivative Foruula derivative Poruula
Lateral
1 1 1 1 ' 273
G, s—astiartEan) | O Oyta| CytOn— % 20+ Cr,)
1—B* 34-BY ‘
Ciy 725 5w Cy Orp+a(0~a—a— 0Ys>
1
O"p SBa: (Asz W) On,,' Onp cA CY - [Ol ”r_l_ﬁg_ (Cy, +2On5) gAg OY, -
az( Olr 23?:; Olﬁ)
2
Cay 541% Cg’ —&‘l 0”5 - “0‘5
2 (1 2 \ C 1 2 226
Oﬂr "'38_11.3 AZB? 3A4% Bs)—_;‘u (1+2_AT§) On,' On,—x ‘(OY +20n‘g) +33 Az 0Y5+
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16 e
N st 0=
8a2M?
Oy T wABT Ory/ Crp
Cr, e <AB 9A’B’) Cr O~ 258 Cry—aC,
Longitudinal — - —
Om“ 3A]:B % C”‘a, O —alnm, + Tet (Oz . ch’zu)
Cn, —5ap M+D) Cn, +a0m,+z" (a0z,+Cn,)
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Cr, — o Cr! Cnt2(ZeY ey,
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